Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global tropospheric NO2 column distributions : Comparing three-dimensional model calculations with GOME measurements

Identifieur interne : 000225 ( PascalFrancis/Corpus ); précédent : 000224; suivant : 000226

Global tropospheric NO2 column distributions : Comparing three-dimensional model calculations with GOME measurements

Auteurs : Guus J. M. Velders ; Claire Granier ; Robert W. Portmann ; Klaus Pfeilsticker ; Mark Wenig ; Thomas Wagner ; Ulrich Platt ; Andreas Richter ; John P. Burrows

Source :

RBID : Pascal:01-0415513

Descripteurs français

English descriptors

Abstract

Tropospheric NO2 columns derived from the data products of the Global Ozone Monitoring Experiment (GOME), deployed on the ESA ERS-2 satellite, have been compared with model calculations from two global three-dimensional chemistry transport models, IMAGES and MOZART. The main objectives of the study are an analysis of the tropospheric NO2 data derived from satellite measurements, an interpretation of it and evaluation of its quality using global models, and an estimation the role of NO2 in radiative forcing. The measured and modeled NO2 columns show similar spatial and seasonal patterns, with large tropospheric column amounts over industrialized areas and small column amounts over remote areas. The comparison of the absolute values of the measured and modeled tropospheric column amounts are particularly dependent upon uncertainties in the derivation of the tropospheric NO2 columns from GOME and the difficulty of modeling the boundary layer in global models, both of which are discussed below. The measured tropospheric column amounts derived from GOME data are of the same order as those calculated by the MOZART model over the industrialized areas of the United States and Europe, but a factor of 2-3 larger for Asia. The modeled tropospheric NO2 columns from MOZART as well as the column amounts measured by GOME are in good agreement with NO2 columns derived from observed NO2 mixing ratios in the boundary layer in eastern North America. The comparison of the models to the GOME data illustrates the degree to which present models reproduce the hot spots seen in the GOME data. The radiative forcing of NO2 has been estimated from the calculated tropospheric NO2 columns. The local maxima in the radiative forcing of tropospheric NO2 for cloud-free conditions over the eastern United States and western Europe represent 0.1-0.15 W m-2, while values of 0.04-0.1 W m- are estimated on a continental scale in these regions, of the same order of magnitude as the forcing of N2O and somewhat smaller than the regional forcing of tropospheric ozone. The globally averaged radiative forcing of tropospheric NO2 is negligible, ∼0.005 W m-2.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 106
A06       @2 D12
A08 01  1  ENG  @1 Global tropospheric NO2 column distributions : Comparing three-dimensional model calculations with GOME measurements
A11 01  1    @1 VELDERS (Guus J. M.)
A11 02  1    @1 GRANIER (Claire)
A11 03  1    @1 PORTMANN (Robert W.)
A11 04  1    @1 PFEILSTICKER (Klaus)
A11 05  1    @1 WENIG (Mark)
A11 06  1    @1 WAGNER (Thomas)
A11 07  1    @1 PLATT (Ulrich)
A11 08  1    @1 RICHTER (Andreas)
A11 09  1    @1 BURROWS (John P.)
A14 01      @1 Air Research Laboratory, National Institute of Public Health and the Environment (RIVM) @2 Bilthoven @3 NLD @Z 1 aut.
A14 02      @1 Aeronomy Laboratory, NOAA @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 03      @1 Service d'Aéronomie, Centre National de la Recherche Scientifique @2 Paris @3 FRA @Z 2 aut.
A14 04      @1 Cooperative Institute for Research in Environmental Science, University of Colorado @2 Boulder, Colorado @3 USA @Z 2 aut.
A14 05      @1 Institut für Umweltphysik, University of Heidelberg @2 Heidelberg @3 DEU @Z 4 aut. @Z 5 aut. @Z 6 aut. @Z 7 aut.
A14 06      @1 Institute of Environmental Physics, University of Bremen @2 Bremen @3 DEU @Z 8 aut. @Z 9 aut.
A20       @1 12643-12660
A21       @1 2001
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000096556560220
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 1 p.3/4
A47 01  1    @0 01-0415513
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Tropospheric NO2 columns derived from the data products of the Global Ozone Monitoring Experiment (GOME), deployed on the ESA ERS-2 satellite, have been compared with model calculations from two global three-dimensional chemistry transport models, IMAGES and MOZART. The main objectives of the study are an analysis of the tropospheric NO2 data derived from satellite measurements, an interpretation of it and evaluation of its quality using global models, and an estimation the role of NO2 in radiative forcing. The measured and modeled NO2 columns show similar spatial and seasonal patterns, with large tropospheric column amounts over industrialized areas and small column amounts over remote areas. The comparison of the absolute values of the measured and modeled tropospheric column amounts are particularly dependent upon uncertainties in the derivation of the tropospheric NO2 columns from GOME and the difficulty of modeling the boundary layer in global models, both of which are discussed below. The measured tropospheric column amounts derived from GOME data are of the same order as those calculated by the MOZART model over the industrialized areas of the United States and Europe, but a factor of 2-3 larger for Asia. The modeled tropospheric NO2 columns from MOZART as well as the column amounts measured by GOME are in good agreement with NO2 columns derived from observed NO2 mixing ratios in the boundary layer in eastern North America. The comparison of the models to the GOME data illustrates the degree to which present models reproduce the hot spots seen in the GOME data. The radiative forcing of NO2 has been estimated from the calculated tropospheric NO2 columns. The local maxima in the radiative forcing of tropospheric NO2 for cloud-free conditions over the eastern United States and western Europe represent 0.1-0.15 W m-2, while values of 0.04-0.1 W m- are estimated on a continental scale in these regions, of the same order of magnitude as the forcing of N2O and somewhat smaller than the regional forcing of tropospheric ozone. The globally averaged radiative forcing of tropospheric NO2 is negligible, ∼0.005 W m-2.
C02 01  X    @0 001E02D04
C02 02  X    @0 001D16C02
C03 01  X  FRE  @0 Troposphère @5 26
C03 01  X  ENG  @0 Troposphere @5 26
C03 01  X  SPA  @0 Troposfera @5 26
C03 02  X  FRE  @0 Modèle 3 dimensions @5 27
C03 02  X  ENG  @0 Three dimensional model @5 27
C03 02  X  SPA  @0 Modelo 3 dimensiones @5 27
C03 03  X  FRE  @0 Observation par satellite @5 28
C03 03  X  ENG  @0 Satellite observation @5 28
C03 03  X  SPA  @0 Observación por satélite @5 28
C03 04  X  FRE  @0 Propriété radiative @5 29
C03 04  X  ENG  @0 Radiative properties @5 29
C03 04  X  SPA  @0 Propiedad radiativa @5 29
C03 05  X  FRE  @0 Analyse donnée @5 30
C03 05  X  ENG  @0 Data analysis @5 30
C03 05  X  SPA  @0 Análisis datos @5 30
C03 06  X  FRE  @0 Forçage @5 31
C03 06  X  ENG  @0 Forcing @5 31
C03 06  X  SPA  @0 Forzamiento @5 31
C03 07  X  FRE  @0 Incertitude @5 32
C03 07  X  ENG  @0 Uncertainty @5 32
C03 07  X  SPA  @0 Incertidumbre @5 32
C03 08  X  FRE  @0 Couche limite atmosphérique @5 34
C03 08  X  ENG  @0 Atmospheric boundary layer @5 34
C03 08  X  SPA  @0 Capa límite atmosférico @5 34
C03 09  X  FRE  @0 Rapport mélange @5 35
C03 09  X  ENG  @0 Mixing ratio @5 35
C03 09  X  SPA  @0 Relación mezcla @5 35
C03 10  X  FRE  @0 Etude comparative @5 36
C03 10  X  ENG  @0 Comparative study @5 36
C03 10  X  SPA  @0 Estudio comparativo @5 36
C03 11  X  FRE  @0 Azote dioxyde @2 NK @2 FX @5 38
C03 11  X  ENG  @0 Nitrogen dioxide @2 NK @2 FX @5 38
C03 11  X  SPA  @0 Nitrógeno dióxido @2 NK @2 FX @5 38
C03 12  X  FRE  @0 Densité colonne @5 40
C03 12  X  ENG  @0 Column density @5 40
C03 12  X  SPA  @0 Densidad columna @5 40
C03 13  X  FRE  @0 Etats Unis @2 NG @5 46
C03 13  X  ENG  @0 United States @2 NG @5 46
C03 13  X  SPA  @0 Estados Unidos @2 NG @5 46
C03 14  X  FRE  @0 Europe @2 NG @5 47
C03 14  X  ENG  @0 Europe @2 NG @5 47
C03 14  X  SPA  @0 Europa @2 NG @5 47
C03 15  X  FRE  @0 Asie @2 NG @5 48
C03 15  X  ENG  @0 Asia @2 NG @5 48
C03 15  X  SPA  @0 Asia @2 NG @5 48
C03 16  X  FRE  @0 Satellite ERS @4 CD @5 96
C03 16  X  ENG  @0 ERS satellite @4 CD @5 96
C03 16  X  SPA  @0 Satélite ERS @4 CD @5 96
C07 01  X  FRE  @0 Amérique du Nord @2 NG
C07 01  X  ENG  @0 North America @2 NG
C07 01  X  SPA  @0 America del norte @2 NG
C07 02  X  FRE  @0 Amérique @2 NG
C07 02  X  ENG  @0 America @2 NG
C07 02  X  SPA  @0 America @2 NG
N21       @1 288

Format Inist (serveur)

NO : PASCAL 01-0415513 INIST
ET : Global tropospheric NO2 column distributions : Comparing three-dimensional model calculations with GOME measurements
AU : VELDERS (Guus J. M.); GRANIER (Claire); PORTMANN (Robert W.); PFEILSTICKER (Klaus); WENIG (Mark); WAGNER (Thomas); PLATT (Ulrich); RICHTER (Andreas); BURROWS (John P.)
AF : Air Research Laboratory, National Institute of Public Health and the Environment (RIVM)/Bilthoven/Pays-Bas (1 aut.); Aeronomy Laboratory, NOAA/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Service d'Aéronomie, Centre National de la Recherche Scientifique/Paris/France (2 aut.); Cooperative Institute for Research in Environmental Science, University of Colorado/Boulder, Colorado/Etats-Unis (2 aut.); Institut für Umweltphysik, University of Heidelberg/Heidelberg/Allemagne (4 aut., 5 aut., 6 aut., 7 aut.); Institute of Environmental Physics, University of Bremen/Bremen/Allemagne (8 aut., 9 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2001; Vol. 106; No. D12; Pp. 12643-12660; Bibl. 1 p.3/4
LA : Anglais
EA : Tropospheric NO2 columns derived from the data products of the Global Ozone Monitoring Experiment (GOME), deployed on the ESA ERS-2 satellite, have been compared with model calculations from two global three-dimensional chemistry transport models, IMAGES and MOZART. The main objectives of the study are an analysis of the tropospheric NO2 data derived from satellite measurements, an interpretation of it and evaluation of its quality using global models, and an estimation the role of NO2 in radiative forcing. The measured and modeled NO2 columns show similar spatial and seasonal patterns, with large tropospheric column amounts over industrialized areas and small column amounts over remote areas. The comparison of the absolute values of the measured and modeled tropospheric column amounts are particularly dependent upon uncertainties in the derivation of the tropospheric NO2 columns from GOME and the difficulty of modeling the boundary layer in global models, both of which are discussed below. The measured tropospheric column amounts derived from GOME data are of the same order as those calculated by the MOZART model over the industrialized areas of the United States and Europe, but a factor of 2-3 larger for Asia. The modeled tropospheric NO2 columns from MOZART as well as the column amounts measured by GOME are in good agreement with NO2 columns derived from observed NO2 mixing ratios in the boundary layer in eastern North America. The comparison of the models to the GOME data illustrates the degree to which present models reproduce the hot spots seen in the GOME data. The radiative forcing of NO2 has been estimated from the calculated tropospheric NO2 columns. The local maxima in the radiative forcing of tropospheric NO2 for cloud-free conditions over the eastern United States and western Europe represent 0.1-0.15 W m-2, while values of 0.04-0.1 W m- are estimated on a continental scale in these regions, of the same order of magnitude as the forcing of N2O and somewhat smaller than the regional forcing of tropospheric ozone. The globally averaged radiative forcing of tropospheric NO2 is negligible, ∼0.005 W m-2.
CC : 001E02D04; 001D16C02
FD : Troposphère; Modèle 3 dimensions; Observation par satellite; Propriété radiative; Analyse donnée; Forçage; Incertitude; Couche limite atmosphérique; Rapport mélange; Etude comparative; Azote dioxyde; Densité colonne; Etats Unis; Europe; Asie; Satellite ERS
FG : Amérique du Nord; Amérique
ED : Troposphere; Three dimensional model; Satellite observation; Radiative properties; Data analysis; Forcing; Uncertainty; Atmospheric boundary layer; Mixing ratio; Comparative study; Nitrogen dioxide; Column density; United States; Europe; Asia; ERS satellite
EG : North America; America
SD : Troposfera; Modelo 3 dimensiones; Observación por satélite; Propiedad radiativa; Análisis datos; Forzamiento; Incertidumbre; Capa límite atmosférico; Relación mezcla; Estudio comparativo; Nitrógeno dióxido; Densidad columna; Estados Unidos; Europa; Asia; Satélite ERS
LO : INIST-3144.354000096556560220
ID : 01-0415513

Links to Exploration step

Pascal:01-0415513

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Global tropospheric NO
<sub>2</sub>
column distributions : Comparing three-dimensional model calculations with GOME measurements</title>
<author>
<name sortKey="Velders, Guus J M" sort="Velders, Guus J M" uniqKey="Velders G" first="Guus J. M." last="Velders">Guus J. M. Velders</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Air Research Laboratory, National Institute of Public Health and the Environment (RIVM)</s1>
<s2>Bilthoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Service d'Aéronomie, Centre National de la Recherche Scientifique</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Cooperative Institute for Research in Environmental Science, University of Colorado</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Portmann, Robert W" sort="Portmann, Robert W" uniqKey="Portmann R" first="Robert W." last="Portmann">Robert W. Portmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pfeilsticker, Klaus" sort="Pfeilsticker, Klaus" uniqKey="Pfeilsticker K" first="Klaus" last="Pfeilsticker">Klaus Pfeilsticker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wenig, Mark" sort="Wenig, Mark" uniqKey="Wenig M" first="Mark" last="Wenig">Mark Wenig</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Thomas" sort="Wagner, Thomas" uniqKey="Wagner T" first="Thomas" last="Wagner">Thomas Wagner</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Platt, Ulrich" sort="Platt, Ulrich" uniqKey="Platt U" first="Ulrich" last="Platt">Ulrich Platt</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, Andreas" sort="Richter, Andreas" uniqKey="Richter A" first="Andreas" last="Richter">Andreas Richter</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burrows, John P" sort="Burrows, John P" uniqKey="Burrows J" first="John P." last="Burrows">John P. Burrows</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0415513</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0415513 INIST</idno>
<idno type="RBID">Pascal:01-0415513</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Global tropospheric NO
<sub>2</sub>
column distributions : Comparing three-dimensional model calculations with GOME measurements</title>
<author>
<name sortKey="Velders, Guus J M" sort="Velders, Guus J M" uniqKey="Velders G" first="Guus J. M." last="Velders">Guus J. M. Velders</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Air Research Laboratory, National Institute of Public Health and the Environment (RIVM)</s1>
<s2>Bilthoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Service d'Aéronomie, Centre National de la Recherche Scientifique</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="04">
<s1>Cooperative Institute for Research in Environmental Science, University of Colorado</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Portmann, Robert W" sort="Portmann, Robert W" uniqKey="Portmann R" first="Robert W." last="Portmann">Robert W. Portmann</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pfeilsticker, Klaus" sort="Pfeilsticker, Klaus" uniqKey="Pfeilsticker K" first="Klaus" last="Pfeilsticker">Klaus Pfeilsticker</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wenig, Mark" sort="Wenig, Mark" uniqKey="Wenig M" first="Mark" last="Wenig">Mark Wenig</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wagner, Thomas" sort="Wagner, Thomas" uniqKey="Wagner T" first="Thomas" last="Wagner">Thomas Wagner</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Platt, Ulrich" sort="Platt, Ulrich" uniqKey="Platt U" first="Ulrich" last="Platt">Ulrich Platt</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Richter, Andreas" sort="Richter, Andreas" uniqKey="Richter A" first="Andreas" last="Richter">Andreas Richter</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Burrows, John P" sort="Burrows, John P" uniqKey="Burrows J" first="John P." last="Burrows">John P. Burrows</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Asia</term>
<term>Atmospheric boundary layer</term>
<term>Column density</term>
<term>Comparative study</term>
<term>Data analysis</term>
<term>ERS satellite</term>
<term>Europe</term>
<term>Forcing</term>
<term>Mixing ratio</term>
<term>Nitrogen dioxide</term>
<term>Radiative properties</term>
<term>Satellite observation</term>
<term>Three dimensional model</term>
<term>Troposphere</term>
<term>Uncertainty</term>
<term>United States</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Modèle 3 dimensions</term>
<term>Observation par satellite</term>
<term>Propriété radiative</term>
<term>Analyse donnée</term>
<term>Forçage</term>
<term>Incertitude</term>
<term>Couche limite atmosphérique</term>
<term>Rapport mélange</term>
<term>Etude comparative</term>
<term>Azote dioxyde</term>
<term>Densité colonne</term>
<term>Etats Unis</term>
<term>Europe</term>
<term>Asie</term>
<term>Satellite ERS</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tropospheric NO
<sub>2</sub>
columns derived from the data products of the Global Ozone Monitoring Experiment (GOME), deployed on the ESA ERS-2 satellite, have been compared with model calculations from two global three-dimensional chemistry transport models, IMAGES and MOZART. The main objectives of the study are an analysis of the tropospheric NO
<sub>2</sub>
data derived from satellite measurements, an interpretation of it and evaluation of its quality using global models, and an estimation the role of NO
<sub>2</sub>
in radiative forcing. The measured and modeled NO
<sub>2</sub>
columns show similar spatial and seasonal patterns, with large tropospheric column amounts over industrialized areas and small column amounts over remote areas. The comparison of the absolute values of the measured and modeled tropospheric column amounts are particularly dependent upon uncertainties in the derivation of the tropospheric NO
<sub>2</sub>
columns from GOME and the difficulty of modeling the boundary layer in global models, both of which are discussed below. The measured tropospheric column amounts derived from GOME data are of the same order as those calculated by the MOZART model over the industrialized areas of the United States and Europe, but a factor of 2-3 larger for Asia. The modeled tropospheric NO
<sub>2</sub>
columns from MOZART as well as the column amounts measured by GOME are in good agreement with NO
<sub>2</sub>
columns derived from observed NO
<sub>2</sub>
mixing ratios in the boundary layer in eastern North America. The comparison of the models to the GOME data illustrates the degree to which present models reproduce the hot spots seen in the GOME data. The radiative forcing of NO
<sub>2</sub>
has been estimated from the calculated tropospheric NO
<sub>2</sub>
columns. The local maxima in the radiative forcing of tropospheric NO
<sub>2</sub>
for cloud-free conditions over the eastern United States and western Europe represent 0.1-0.15 W m
<sup>-2</sup>
, while values of 0.04-0.1 W m
<sup>-</sup>
are estimated on a continental scale in these regions, of the same order of magnitude as the forcing of N
<sub>2</sub>
O and somewhat smaller than the regional forcing of tropospheric ozone. The globally averaged radiative forcing of tropospheric NO
<sub>2</sub>
is negligible, ∼0.005 W m
<sup>-2</sup>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>106</s2>
</fA05>
<fA06>
<s2>D12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Global tropospheric NO
<sub>2</sub>
column distributions : Comparing three-dimensional model calculations with GOME measurements</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VELDERS (Guus J. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRANIER (Claire)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PORTMANN (Robert W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PFEILSTICKER (Klaus)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WENIG (Mark)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WAGNER (Thomas)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PLATT (Ulrich)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>RICHTER (Andreas)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BURROWS (John P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Air Research Laboratory, National Institute of Public Health and the Environment (RIVM)</s1>
<s2>Bilthoven</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Aeronomy Laboratory, NOAA</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Service d'Aéronomie, Centre National de la Recherche Scientifique</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Cooperative Institute for Research in Environmental Science, University of Colorado</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut für Umweltphysik, University of Heidelberg</s1>
<s2>Heidelberg</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Institute of Environmental Physics, University of Bremen</s1>
<s2>Bremen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>12643-12660</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000096556560220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0415513</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tropospheric NO
<sub>2</sub>
columns derived from the data products of the Global Ozone Monitoring Experiment (GOME), deployed on the ESA ERS-2 satellite, have been compared with model calculations from two global three-dimensional chemistry transport models, IMAGES and MOZART. The main objectives of the study are an analysis of the tropospheric NO
<sub>2</sub>
data derived from satellite measurements, an interpretation of it and evaluation of its quality using global models, and an estimation the role of NO
<sub>2</sub>
in radiative forcing. The measured and modeled NO
<sub>2</sub>
columns show similar spatial and seasonal patterns, with large tropospheric column amounts over industrialized areas and small column amounts over remote areas. The comparison of the absolute values of the measured and modeled tropospheric column amounts are particularly dependent upon uncertainties in the derivation of the tropospheric NO
<sub>2</sub>
columns from GOME and the difficulty of modeling the boundary layer in global models, both of which are discussed below. The measured tropospheric column amounts derived from GOME data are of the same order as those calculated by the MOZART model over the industrialized areas of the United States and Europe, but a factor of 2-3 larger for Asia. The modeled tropospheric NO
<sub>2</sub>
columns from MOZART as well as the column amounts measured by GOME are in good agreement with NO
<sub>2</sub>
columns derived from observed NO
<sub>2</sub>
mixing ratios in the boundary layer in eastern North America. The comparison of the models to the GOME data illustrates the degree to which present models reproduce the hot spots seen in the GOME data. The radiative forcing of NO
<sub>2</sub>
has been estimated from the calculated tropospheric NO
<sub>2</sub>
columns. The local maxima in the radiative forcing of tropospheric NO
<sub>2</sub>
for cloud-free conditions over the eastern United States and western Europe represent 0.1-0.15 W m
<sup>-2</sup>
, while values of 0.04-0.1 W m
<sup>-</sup>
are estimated on a continental scale in these regions, of the same order of magnitude as the forcing of N
<sub>2</sub>
O and somewhat smaller than the regional forcing of tropospheric ozone. The globally averaged radiative forcing of tropospheric NO
<sub>2</sub>
is negligible, ∼0.005 W m
<sup>-2</sup>
.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001E02D04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D16C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété radiative</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Radiative properties</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propiedad radiativa</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Analyse donnée</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Data analysis</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Análisis datos</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Incertitude</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Uncertainty</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Incertidumbre</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Couche limite atmosphérique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Atmospheric boundary layer</s0>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Capa límite atmosférico</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rapport mélange</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Mixing ratio</s0>
<s5>35</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Relación mezcla</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>36</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Azote dioxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>38</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nitrogen dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>38</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Nitrógeno dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Densité colonne</s0>
<s5>40</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Column density</s0>
<s5>40</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Densidad columna</s0>
<s5>40</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>46</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>46</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Europe</s0>
<s2>NG</s2>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Europe</s0>
<s2>NG</s2>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Europa</s0>
<s2>NG</s2>
<s5>47</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
<s5>48</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Satellite ERS</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>ERS satellite</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Satélite ERS</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Amérique du Nord</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>North America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>America del norte</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Amérique</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>America</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>288</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 01-0415513 INIST</NO>
<ET>Global tropospheric NO
<sub>2</sub>
column distributions : Comparing three-dimensional model calculations with GOME measurements</ET>
<AU>VELDERS (Guus J. M.); GRANIER (Claire); PORTMANN (Robert W.); PFEILSTICKER (Klaus); WENIG (Mark); WAGNER (Thomas); PLATT (Ulrich); RICHTER (Andreas); BURROWS (John P.)</AU>
<AF>Air Research Laboratory, National Institute of Public Health and the Environment (RIVM)/Bilthoven/Pays-Bas (1 aut.); Aeronomy Laboratory, NOAA/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Service d'Aéronomie, Centre National de la Recherche Scientifique/Paris/France (2 aut.); Cooperative Institute for Research in Environmental Science, University of Colorado/Boulder, Colorado/Etats-Unis (2 aut.); Institut für Umweltphysik, University of Heidelberg/Heidelberg/Allemagne (4 aut., 5 aut., 6 aut., 7 aut.); Institute of Environmental Physics, University of Bremen/Bremen/Allemagne (8 aut., 9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2001; Vol. 106; No. D12; Pp. 12643-12660; Bibl. 1 p.3/4</SO>
<LA>Anglais</LA>
<EA>Tropospheric NO
<sub>2</sub>
columns derived from the data products of the Global Ozone Monitoring Experiment (GOME), deployed on the ESA ERS-2 satellite, have been compared with model calculations from two global three-dimensional chemistry transport models, IMAGES and MOZART. The main objectives of the study are an analysis of the tropospheric NO
<sub>2</sub>
data derived from satellite measurements, an interpretation of it and evaluation of its quality using global models, and an estimation the role of NO
<sub>2</sub>
in radiative forcing. The measured and modeled NO
<sub>2</sub>
columns show similar spatial and seasonal patterns, with large tropospheric column amounts over industrialized areas and small column amounts over remote areas. The comparison of the absolute values of the measured and modeled tropospheric column amounts are particularly dependent upon uncertainties in the derivation of the tropospheric NO
<sub>2</sub>
columns from GOME and the difficulty of modeling the boundary layer in global models, both of which are discussed below. The measured tropospheric column amounts derived from GOME data are of the same order as those calculated by the MOZART model over the industrialized areas of the United States and Europe, but a factor of 2-3 larger for Asia. The modeled tropospheric NO
<sub>2</sub>
columns from MOZART as well as the column amounts measured by GOME are in good agreement with NO
<sub>2</sub>
columns derived from observed NO
<sub>2</sub>
mixing ratios in the boundary layer in eastern North America. The comparison of the models to the GOME data illustrates the degree to which present models reproduce the hot spots seen in the GOME data. The radiative forcing of NO
<sub>2</sub>
has been estimated from the calculated tropospheric NO
<sub>2</sub>
columns. The local maxima in the radiative forcing of tropospheric NO
<sub>2</sub>
for cloud-free conditions over the eastern United States and western Europe represent 0.1-0.15 W m
<sup>-2</sup>
, while values of 0.04-0.1 W m
<sup>-</sup>
are estimated on a continental scale in these regions, of the same order of magnitude as the forcing of N
<sub>2</sub>
O and somewhat smaller than the regional forcing of tropospheric ozone. The globally averaged radiative forcing of tropospheric NO
<sub>2</sub>
is negligible, ∼0.005 W m
<sup>-2</sup>
.</EA>
<CC>001E02D04; 001D16C02</CC>
<FD>Troposphère; Modèle 3 dimensions; Observation par satellite; Propriété radiative; Analyse donnée; Forçage; Incertitude; Couche limite atmosphérique; Rapport mélange; Etude comparative; Azote dioxyde; Densité colonne; Etats Unis; Europe; Asie; Satellite ERS</FD>
<FG>Amérique du Nord; Amérique</FG>
<ED>Troposphere; Three dimensional model; Satellite observation; Radiative properties; Data analysis; Forcing; Uncertainty; Atmospheric boundary layer; Mixing ratio; Comparative study; Nitrogen dioxide; Column density; United States; Europe; Asia; ERS satellite</ED>
<EG>North America; America</EG>
<SD>Troposfera; Modelo 3 dimensiones; Observación por satélite; Propiedad radiativa; Análisis datos; Forzamiento; Incertidumbre; Capa límite atmosférico; Relación mezcla; Estudio comparativo; Nitrógeno dióxido; Densidad columna; Estados Unidos; Europa; Asia; Satélite ERS</SD>
<LO>INIST-3144.354000096556560220</LO>
<ID>01-0415513</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0415513
   |texte=   Global tropospheric NO2 column distributions : Comparing three-dimensional model calculations with GOME measurements
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023